36 research outputs found

    Beating quantum limits in optomechanical sensor by cavity detuning

    Full text link
    We study the quantum limits in an optomechanical sensor based on a detuned high-finesse cavity with a movable mirror. We show that the radiation pressure exerted on the mirror by the light in the detuned cavity induces a modification of the mirror dynamics and makes the mirror motion sensitive to the signal. This leads to an amplification of the signal by the mirror dynamics, and to an improvement of the sensor sensitivity beyond the standard quantum limit, up to an ultimate quantum limit only related to the mechanical dissipation of the mirror. This improvement is somewhat similar to the one predicted in detuned signal-recycled gravitational-waves interferometers, and makes a high-finesse cavity a model system to test these quantum effect

    Resolved-sideband cooling and measurement of a micromechanical oscillator close to the quantum limit

    Full text link
    The observation of quantum phenomena in macroscopic mechanical oscillators has been a subject of interest since the inception of quantum mechanics. Prerequisite to this regime are both preparation of the mechanical oscillator at low phonon occupancy and a measurement sensitivity at the scale of the spread of the oscillator's ground state wavefunction. It has been widely perceived that the most promising approach to address these two challenges are electro nanomechanical systems. Here we approach for the first time the quantum regime with a mechanical oscillator of mesoscopic dimensions--discernible to the bare eye--and 1000-times more massive than the heaviest nano-mechanical oscillators used to date. Imperative to these advances are two key principles of cavity optomechanics: Optical interferometric measurement of mechanical displacement at the attometer level, and the ability to use measurement induced dynamic back-action to achieve resolved sideband laser cooling of the mechanical degree of freedom. Using only modest cryogenic pre-cooling to 1.65 K, preparation of a mechanical oscillator close to its quantum ground state (63+-20 phonons) is demonstrated. Simultaneously, a readout sensitivity that is within a factor of 5.5+-1.5 of the standard quantum limit is achieved. The reported experiments mark a paradigm shift in the approach to the quantum limit of mechanical oscillators using optical techniques and represent a first step into a new era of experimental investigation which probes the quantum nature of the most tangible harmonic oscillator: a mechanical vibration.Comment: 14 pages, 4 figure

    Synchronizing the dynamics of a single NV spin qubit on a parametrically coupled radio-frequency field through microwave dressing

    Full text link
    A hybrid spin-oscillator system in parametric interaction is experimentally emulated using a single NV spin qubit immersed in a radio frequency (RF) field and probed with a quasi resonant microwave (MW) field. We report on the MW mediated locking of the NV spin dynamics onto the RF field, appearing when the MW driven Rabi precession frequency approaches the RF frequency and for sufficiently large RF amplitudes. These signatures are analog to a phononic Mollow triplet in the MW rotating frame for the parametric interaction and promise to have impact in spin-dependent force detection strategies

    Observation of a phononic Mollow triplet in a hybrid spin-nanomechanical system

    Full text link
    Reminiscent of the bound character of a qubit's dynamics confined on the Bloch sphere, the observation of a Mollow triplet in the resonantly driven qubit fluorescence spectrum represents one of the founding signatures of Quantum Electrodynamics. Here we report on its observation in a hybrid spin-nanomechanical system, where a Nitro-gen Vacancy spin qubit is magnetically coupled to the vibrations of a Silicon Carbide nanowire. A resonant microwave field turns the originally parametric hybrid interac-tion into a resonant process, where acoustic phonons are now able to induce transitions between the dressed qubit states, leading to synchronized spin-oscillator dynamics. We further explore the vectorial character of the hybrid coupling to the bidimensional de-formations of the nanowire. The demonstrated microwave assisted synchronization of the spin-oscillator dynamics opens novel perspectives for the exploration of spin-dependent forces, the key-ingredient for quantum state transfer

    Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state

    Full text link
    Cooling a mesoscopic mechanical oscillator to its quantum ground state is elementary for the preparation and control of low entropy quantum states of large scale objects. Here, we pre-cool a 70-MHz micromechanical silica oscillator to an occupancy below 200 quanta by thermalizing it with a 600-mK cold 3He gas. Two-level system induced damping via structural defect states is shown to be strongly reduced, and simultaneously serves as novel thermometry method to independently quantify excess heating due to the cooling laser. We demonstrate that dynamical backaction sideband cooling can reduce the average occupancy to 9+-1 quanta, implying that the mechanical oscillator can be found (10+- 1)% of the time in its quantum ground state.Comment: 11 pages, 5 figure

    Deviation from the normal mode expansion in a coupled graphene-nanomechanical system

    Full text link
    We optomechanically measure the vibrations of a nanomechanical system made of a graphene membrane suspended on a silicon nitride nanoresonator. When probing the thermal noise of the coupled nanomechanical device, we observe a significant deviation from the normal mode expansion. It originates from the heterogeneous character of mechanical dissipation over the spatial extension of coupled eigenmodes, which violates one of the fundamental prerequisite for employing this commonly used description of the nanoresonators' thermal noise. We subsequently measure the local mechanical susceptibility and demonstrate that the fluctuation-dissipation theorem still holds and permits a proper evaluation of the thermal noise of the nanomechanical system. Since it naturally becomes delicate to ensure a good spatial homogeneity at the nanoscale, this approach is fundamental to correctly describe the thermal noise of nanomechanical systems which ultimately impact their sensing capacity

    Nano-optomechanical measurement in the photon counting regime

    Full text link
    Optically measuring in the photon counting regime is a recurrent challenge in modern physics and a guarantee to develop weakly invasive probes. Here we investigate this idea on a hybrid nano-optomechanical system composed of a nanowire hybridized to a single Nitrogen-Vacancy (NV) defect. The vibrations of the nanoresonator grant a spatial degree of freedom to the quantum emitter and the photon emission event can now vary in space and time. We investigate how the nanomotion is encoded on the detected photon statistics and explore their spatio-temporal correlation properties. This allows a quantitative measurement of the vibrations of the nanomechanical oscillator at unprecedentedly low light intensities in the photon counting regime when less than one photon is detected per oscillation period, where standard detectors are dark-noise-limited. These results have implications for probing weakly interacting nanoresonators, for low temperature experiments and for investigating single moving markers

    A single NV defect coupled to a nanomechanical oscillator

    Full text link
    A single Nitrogen Vacancy (NV) center hosted in a diamond nanocrystal is positioned at the extremity of a SiC nanowire. This novel hybrid system couples the degrees of freedom of two radically different systems, i.e. a nanomechanical oscillator and a single quantum object. The dynamics of the nano-resonator is probed through time resolved nanocrystal fluorescence and photon correlation measurements, conveying the influence of a mechanical degree of freedom given to a non-classical photon emitter. Moreover, by immersing the system in a strong magnetic field gradient, we induce a magnetic coupling between the nanomechanical oscillator and the NV electronic spin, providing nanomotion readout through a single electronic spin. Spin-dependent forces inherent to this coupling scheme are essential in a variety of active cooling and entanglement protocols used in atomic physics, and should now be within the reach of nanomechanical hybrid systems

    Cavity nano-optomechanics in the ultrastrong coupling regime with ultrasensitive force sensors

    Get PDF
    In a canonical optomechanical system, mechanical vibrations are dynamically encoded on an optical probe field which reciprocally exerts a backaction force. Due to the weak single photon coupling strength achieved with macroscopic oscillators, most of existing experiments were conducted with large photon numbers to achieve sizeable effects, thereby causing a dilution of the original optomechanical non-linearity. Here, we investigate the optomechanical interaction of an ultrasensi-tive suspended nanowire inserted in a fiber-based microcavity mode. This implementation allows to enter far into the hitherto unexplored ultrastrong optomechanical coupling regime, where one single intracavity photon can displace the oscillator by more than its zero point fluctuations. To fully characterize our system, we implement nanowire-based scanning probe measurements to map the vectorial optomechanical coupling strength, but also to reveal the intracavity optomechanical force field experienced by the nanowire. This work establishes that the single photon cavity optomechanics regime is within experimental reach. Introduction-The field of optomechanics has gone through many impressive developments over the last decades [1]. The coupling between a probe light field and a mechanical degree of freedom, an oscillator, possibly assisted by a high finesse cavity was early proposed as an ideal platform to explore the quantum limits of ultrasen-sitive measurements, where the quantum fluctuations of the light are the dominant source of measurement noise [2-5]. The measurement backaction was also employed to manipulate the oscillator state through optical forces and dynamical backaction, leading to optomechanical correlations between both components of the system. In this framework, ground state cooling, mechanical detection of radiation pressure quantum noise, advanced correlation between light and mechanical states or optomechanical squeezing were reported [6-19]. All those impressive results were obtained in the linear regime of cavity optomechanics, making use of large photon numbers, where the interaction Hamiltonian is linearized around an operating setpoint. However, the optomechanical interaction possesses an intrinsic non-linearity at the single excitation level, which has for the moment remained far from experimental reach due to the weak single photon coupling strength achieved with macroscopic oscillators. This regime is achieved when a single photon in the cavity shifts the static rest position of the mechanical resonator by a quantity δx (1) which is larger than its zero point fluctuations δx zpf. A very strong optomechanical interaction is indeed needed to fulfil this condition since it requires g 0 /Ω m > 1 where g 0 is the single photon optomechanical coupling and Ω m the resonant pulsation of the mechanical oscillator. Operating in the ultra-strong coupling regime is thus an experimenta
    corecore